Final exam for Kwantumfysica 1 - 2010-2011
Friday 28 January 2011, 9:00 - 12:00

READ THIS FIRST:

e Note that the lower half of this page lists some useful formulas and constants.

e Clearly write your name and study number on each answer sheet that you use.

e On the first answer sheet, write clearly the total number of answer sheets that you
turn in.

e Note that this exam has 4 questions, it continues on the backside of the papers!

e Start each question (number 1, 2, 3, 4) on a new answer sheet.

e The exam is open book within limits. You are allowed to use the book by Liboff,
the handout Extra note on two-level systems and exchange degeneracy for identical
particles, and one A4 sheet with notes, but nothing more than this.

e If it says “make a rough estimate”, there is no need to make a detailed calculation,
and making a simple estimate is good enough. If it says “calculate” or “derive”,
you are supposed to present a full analytical calculation.

e If you get stuck on some part of a problem for a long time, it may be wise to skip it
and try the next part of a problem first.

e If you are ready with the exam, please fill in the course-evaluation question
sheet. You can keep working on the exam until 11:30, and fill it in shortly after
11:30 if you like.

Useful formulas and constants:

Electron mass me =9.1- 10! kg
Electron charge e =-1.6-10"7C
Planck’s constant h =6.626-102*Js=4.136 - 105 ¢Vs

Planck’s reduced constant % =1.055-10>*Js=6.582-10"'¢ Vs

Fourier relation between x-representation and k-representation of a state

P(x) = ﬁj\?(k)e”“ dk

— 1 = y
1Ij(k)= *fi—;ﬁl\P(X)e et dx
Standard Fourier transform pairs:
v (x) ={—J§7 , [x| <b Fourier ¥ (k) _ \/E sin kb
V4

0, [+>b o kb
_ | b sinbx Fourier _———~ 71&7> lk|gb
we)= [ " Lp(k)_{O’ =t

Standard integrals:
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Problem 1

Consider an electron, that behaves as a one-dimensional quantum particle with
position x. At some time #, the electron is in the following normalized state (see also
figure), where the constant a = 10° m™.

P(x)

l/\/\/\A/\/\,\A/V\/\Ax

One is going to measure the velocity of this electron at this time fp. Calculate the
probability for getting a result between +80 km/s and +120 km/s.

Problem 2
Consider a one-dimensional quantum particle in a double-well potential (see figure).

Potential

I ] I
-a 0 a
Position

We will assume that only the low-energy dynamics of this system is relevant. In that
case, it can be described as an effective two-state system. The system then has two
position eigenstates, which belong to the operator (observable) 4 for the position of
the particle in this double-well system,

21<—>(_Oa gj |¢L>®@a |¢’R>*’®'

One of these states, denoted as |gr), corresponds to the particle being localized at —a
(in the left well), and has the position eigenvalue —a. The other position eigenstate,
denoted as |@g) with eigenvalue +a corresponds to the particle being localized in the
right well. We also introduced a matrix and vector notation for representing the
operators and states of this system, using the basis spanned by |¢;) and |@g).

The particle can go from the left well to the right well by tunneling through the
barrier. Using the same matrix notation as before (in the same basis spanned by |¢r)
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and |@g)), the Hamiltonian for the particle is (here T is a real and negative number, and
E, is a real positive number)

A E, T
H& .
T E,

a) Calculate whether 4 and A commute.

b) Proof (or better, derive) that the energy eigenstates of this system are

1

|(0g> > “/15 with eigenvalue E,
ﬁ
1

§Oe> < g with eigenvalue F,
ﬁ

and give the values of E, and E, in terms of E, and 7. Confirm that |@;,) is the ground
state.

¢) Calculate for the following four states ['¥) the probability that a measurement with
observable A4 gives as result -a.

c-1) !‘P> = ’gog>
c-ii) |‘P>= ¢e>

2.))
2.))

c-iii) |‘P>=71—2_—(§gog>+

c-iv) I‘P>=%(l¢g>-

d) Calculate the value of the four quantities

<¢g A ¢g>9 <¢e |‘2| ¢e>> <¢g A ¢e> and <¢e
Describe in words what these quantities represent.

4

?,)-

e) The outcome of a measurement of 4 (which ended at time 7 = 0) is that the particle
is in the left well. The measurement is then stopped, and the quantum system evolves

again on itself. Calculate how </Al> now depends on time for # > 0. Describe in words

what the calculation represents.

Problem 3

Consider again the type of system of Problem 2. Now, however, consider that you
have two identical versions of it at two different locations (two double-well potentials,
each with one particle in it). One of the systems is at place P1, and the other at place
P2, and the distance between these two places is much larger than the size of the
double-well potential.
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a) At both places, you will do a measurement with observable A. What is the
probability that you will get the outcome -a for both systems, if the states of the
systems at the moment just before the measurement are as follows?
a-i) the system at P1 is in the state |@,) and the system at P2 is in the state |¢).
a-ii) the system at P1 is in the state |@.) and the system at P2 is in the state |g).

Now consider that you have again only a single double-well potential (exactly the
same as before), but that this double-well potential contains two identical particles
(the same type of particle as before). To describe this system, we need to label the
particles from now on. We will use the indices 1 and 2 to label the particles, and the
index T refers to the total system. These two particle do not interact. This means that
the Hamiltonian of the total system is now
Ho=f B,

where H; and 17, the operators H for each particle (now in the Hilbert space with
states of the two-particle system).

b) Assume that this total system (combined system with two particles) is prepared in a
state with total energy Er= E, + E,. Show that the following three states are all an
eigenstate of Ay with energy ET Eq + E,.

b)), =[00)]0e)
beil) W)y, =]0a)|2p2)
b-iii) [‘PT >a 5= a} ¥, > ca T ,B] Y, > s (see definitions in b-i) and b-ii) )

¢) It can be shown that in the case of identical particles, the only states|‘PT>aﬂ (see
definition in b) ) that occur in nature are for o = + =~ and f= —%
i\P :T’¢gl>¢e2>+Tl¢el>¢g2>

|‘P '¢g1> %2 ¢e1> ¢g2> .
Show that "PT> ; is symmetric and that |‘PT > ¢ 1s anti-symmetric with respect to

exchanging the two particles in the system.

d) We do a measurement to determine for both particles whether they are in the right
well or in the left well (measurement in the sense of observable 4). Calculate for the
following two states the probability that you will get the outcome -a for both particles.

d-i) 1‘PT > ¢ (see definition in ¢) ).
d-ii) |¥,),  (see definition inc)).
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Problem 4
Consider a one-dimensional system, with a single particle with mass m = 10% kg at
position x in the potential

Vix)=1 (ma)(f )x2 .

Given the mass m, the constant @y defines how steep the potential is. This system
concerns a particle that is bound in a static potential, so it must have a discrete set of
energy eigenstates y,(x) (or in Dirac notation, [y,) ), where # is an index
n=0,1,2,3... for labeling these states.

a) Write down the Hamiltonian H of this system in x-representation. Write it out in an
expression that uses the constants m and ay where possible.

Assume that it is known that the ground state (lowest energy eigenstate) of this system
is of the form

P(x)= de™,
(in Dirac notation denoted as ['¥) ) but that the values of 4 and b (real constants) are
not known, and also the eigenvalue that belongs to this eigenstate is not known.

b) Draw a graph of ¥(x). For which value of 4 (in terms of constants b and others that
you may need) is this state normalized?

In order to find the values for 4 and b for which the state W(x) represents the true
ground state y(x), you must use in this problem the variational method. For this case,

this implies that <I§T > is minimum with respect to the variation of the parameter b.

¢) Say that the real (but still unknown to us) ground state energy of the system is Ey,
with the corresponding eigenstate |y). Use Dirac notation to proof that for any state
(¥|a))

¥)
Hint: Use that any trial state [¥) can always be written as a superposition of all the
real energy eigenstates |y,).

|'¥) that we may consider, it will always obey >E,.

d) The results of ¢) shows that equality %ﬁn\l’—? = E, holds only for the case [\¥)=[y).
Here W has a minimum value, so |yo) and Ey can be found by a procedure that
minimizes the expression with respect to 5. Obviously, this must be carried out in the
x-representation. Use this approach to derive the values of b, 4 and E; in terms of m

and ax.
e) Calculate for the ground state that you found in d), the expectation value for kinetic

energy and the expectation value for potential energy. Explain the result of
qualitatively in terms of the Heisenberg uncertainty relation.
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