Final exam for Kwantumfysica 1 - 2010-2011 Friday 28 January 2011, 9:00 - 12:00

READ THIS FIRST:

- Note that the lower half of this page lists some useful formulas and constants.
- Clearly write your name and study number on each answer sheet that you use.
- On the first answer sheet, write clearly the total number of answer sheets that you turn in.
- Note that this exam has 4 questions, it continues on the backside of the papers!
- Start each question (number 1, 2, 3, 4) on a new answer sheet.
- The exam is open book within limits. You are allowed to use the book by Liboff, the handout *Extra note on two-level systems and exchange degeneracy for identical particles*, and one A4 sheet with notes, but nothing more than this.
- If it says "make a rough estimate", there is no need to make a detailed calculation, and making a simple estimate is good enough. If it says "calculate" or "derive", you are supposed to present a full analytical calculation.
- If you get stuck on some part of a problem for a long time, it may be wise to skip it and try the next part of a problem first.
- If you are ready with the exam, please fill in the **course-evaluation question sheet**. You can keep working on the exam until 11:30, and fill it in shortly after 11:30 if you like.

Useful formulas and constants:

Electron mass $m_e = 9.1 \cdot 10^{-31} \text{ kg}$ Electron charge $-e = -1.6 \cdot 10^{-19} \text{ C}$

Planck's constant $h = 6.626 \cdot 10^{-34} \text{ Js} = 4.136 \cdot 10^{-15} \text{ eVs}$ Planck's reduced constant $\hbar = 1.055 \cdot 10^{-34} \text{ Js} = 6.582 \cdot 10^{-16} \text{ eVs}$

Fourier relation between x-representation and k-representation of a state

$$\Psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \overline{\Psi}(k) e^{ikx} dk$$

$$\overline{\Psi}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Psi(x) e^{-ikx} dx$$

Standard Fourier transform pairs:

$$\Psi(x) = \begin{cases} \frac{1}{\sqrt{2b}}, & |x| \le b & Fourier \\ 0, & |x| > b \end{cases} \quad \Leftrightarrow \quad \overline{\Psi}(k) = \sqrt{\frac{b}{\pi}} \frac{\sin kb}{kb}$$

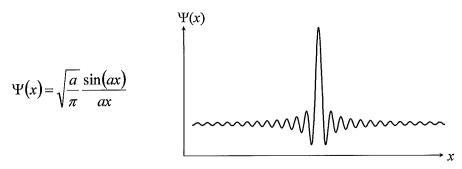
$$\Psi(x) = \sqrt{\frac{b}{\pi}} \frac{\sin bx}{bx} \qquad Fourier \\ \leftrightarrow \qquad \overline{\Psi}(k) = \begin{cases} \frac{1}{\sqrt{2b}}, & |k| \le b \\ 0, & |k| > b \end{cases}$$

Standard integrals:

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

$$\int_{-\infty}^{\infty} x^2 e^{-x^2} dx = \frac{1}{2} \sqrt{\pi}$$

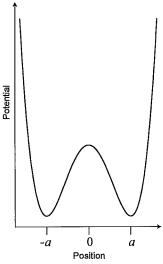
Consider an electron, that behaves as a one-dimensional quantum particle with position x. At some time t_0 the electron is in the following normalized state (see also figure), where the constant $a = 10^9$ m⁻¹.



One is going to measure the velocity of this electron at this time t_0 . Calculate the probability for getting a result between +80 km/s and +120 km/s.

Problem 2

Consider a one-dimensional quantum particle in a double-well potential (see figure).



We will assume that only the low-energy dynamics of this system is relevant. In that case, it can be described as an effective two-state system. The system then has two position eigenstates, which belong to the operator (observable) \hat{A} for the position of the particle in this double-well system,

$$\hat{A} \leftrightarrow \begin{pmatrix} -a & 0 \\ 0 & a \end{pmatrix}, \quad |\varphi_L\rangle \leftrightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |\varphi_R\rangle \leftrightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

One of these states, denoted as $|\varphi_L\rangle$, corresponds to the particle being localized at -a (in the left well), and has the position eigenvalue -a. The other position eigenstate, denoted as $|\varphi_R\rangle$ with eigenvalue +a corresponds to the particle being localized in the right well. We also introduced a matrix and vector notation for representing the operators and states of this system, using the basis spanned by $|\varphi_L\rangle$ and $|\varphi_R\rangle$.

The particle can go from the left well to the right well by tunneling through the barrier. Using the same matrix notation as before (in the same basis spanned by $|\varphi_L\rangle$

and $|\varphi_R\rangle$), the Hamiltonian for the particle is (here *T* is a real and negative number, and E_0 is a real positive number)

$$\hat{H} \leftrightarrow \begin{pmatrix} E_0 & T \\ T & E_0 \end{pmatrix}.$$

- a) Calculate whether \hat{A} and \hat{H} commute.
- b) Proof (or better, derive) that the energy eigenstates of this system are

$$\left| \varphi_{g} \right\rangle \leftrightarrow \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$
 with eigenvalue E_{g}

$$|\varphi_e\rangle \leftrightarrow \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix}$$
 with eigenvalue E_e

and give the values of E_g and E_e in terms of E_0 and T. Confirm that $|\varphi_g\rangle$ is the ground state.

c) Calculate for the following four states $|\Psi\rangle$ the probability that a measurement with observable \hat{A} gives as result -a.

c-i)
$$|\Psi\rangle = |\varphi_g\rangle$$

c-ii)
$$|\Psi\rangle = |\varphi_e\rangle$$

c-iii)
$$|\Psi\rangle = \frac{1}{\sqrt{2}} (|\varphi_g\rangle + |\varphi_e\rangle)$$

c-iv)
$$|\Psi\rangle = \frac{1}{\sqrt{2}} (|\varphi_g\rangle - |\varphi_e\rangle)$$

d) Calculate the value of the four quantities

$$\langle \varphi_{g} | \hat{A} | \varphi_{g} \rangle$$
, $\langle \varphi_{e} | \hat{A} | \varphi_{e} \rangle$, $\langle \varphi_{g} | \hat{A} | \varphi_{e} \rangle$ and $\langle \varphi_{e} | \hat{A} | \varphi_{g} \rangle$.

Describe in words what these quantities represent.

e) The outcome of a measurement of \hat{A} (which ended at time t=0) is that the particle is in the left well. The measurement is then stopped, and the quantum system evolves again on itself. Calculate how $\langle \hat{A} \rangle$ now depends on time for t>0. Describe in words what the calculation represents.

Problem 3

Consider again the type of system of **Problem 2**. Now, however, consider that you have two identical versions of it at two different locations (two double-well potentials, each with one particle in it). One of the systems is at place P1, and the other at place P2, and the distance between these two places is much larger than the size of the double-well potential.

- a) At both places, you will do a measurement with observable \hat{A} . What is the probability that you will get the outcome -a for both systems, if the states of the systems at the moment just before the measurement are as follows?
 - a-i) the system at P1 is in the state $|\varphi_g\rangle$ and the system at P2 is in the state $|\varphi_e\rangle$.
 - a-ii) the system at P1 is in the state $|\varphi_e\rangle$ and the system at P2 is in the state $|\varphi_g\rangle$.

Now consider that you have again only a single double-well potential (exactly the same as before), but that this double-well potential contains two identical particles (the same type of particle as before). To describe this system, we need to label the particles from now on. We will use the indices 1 and 2 to label the particles, and the index T refers to the total system. These two particle do not interact. This means that the Hamiltonian of the total system is now

$$\hat{H}_{\scriptscriptstyle T} = \hat{H}_{\scriptscriptstyle 1} + \hat{H}_{\scriptscriptstyle 2}$$
 ,

where \hat{H}_1 and \hat{H}_2 the operators \hat{H} for each particle (now in the Hilbert space with states of the two-particle system).

- **b)** Assume that this total system (combined system with two particles) is prepared in a state with total energy $E_T = E_g + E_e$. Show that the following three states are all an eigenstate of \hat{H}_T with energy $E_T = E_g + E_e$.
 - b-i) $|\Psi_T\rangle_{C\alpha} = |\varphi_{g1}\rangle|\varphi_{e2}\rangle$
 - b-ii) $\left|\Psi_{T}\right\rangle_{C\beta}=\left|\varphi_{e1}\right\rangle\left|\varphi_{g2}\right\rangle$
 - b-iii) $|\Psi_T\rangle_{\alpha\beta} = \alpha |\Psi_T\rangle_{C\alpha} + \beta |\Psi_T\rangle_{C\beta}$ (see definitions in b-i) and b-ii)
- c) It can be shown that in the case of identical particles, the only states $|\Psi_T\rangle_{\alpha\beta}$ (see definition in b)) that occur in nature are for $\alpha=+\frac{1}{\sqrt{2}}$ and $\beta=\pm\frac{1}{\sqrt{2}}$,

$$\begin{split} \left| \Psi_{T} \right\rangle_{S} &= \frac{1}{\sqrt{2}} \left| \varphi_{g1} \right\rangle \left| \varphi_{e2} \right\rangle + \frac{1}{\sqrt{2}} \left| \varphi_{e1} \right\rangle \left| \varphi_{g2} \right\rangle \\ \left| \Psi_{T} \right\rangle_{AS} &= \frac{1}{\sqrt{2}} \left| \varphi_{g1} \right\rangle \left| \varphi_{e2} \right\rangle - \frac{1}{\sqrt{2}} \left| \varphi_{e1} \right\rangle \left| \varphi_{g2} \right\rangle \end{split}$$

Show that $|\Psi_T\rangle_S$ is symmetric and that $|\Psi_T\rangle_{AS}$ is anti-symmetric with respect to exchanging the two particles in the system.

- d) We do a measurement to determine for both particles whether they are in the right well or in the left well (measurement in the sense of observable \hat{A}). Calculate for the following two states the probability that you will get the outcome -a for both particles.
 - d-i) $|\Psi_T\rangle_c$ (see definition in c)).
 - d-ii) $\left|\Psi_{T}\right\rangle_{AS}$ (see definition in c)).

Consider a one-dimensional system, with a single particle with mass $m = 10^{-20}$ kg at position x in the potential

$$V(x) = \frac{1}{2} \left(m \omega_0^2 \right) x^2.$$

Given the mass m, the constant ω_0 defines how steep the potential is. This system concerns a particle that is bound in a static potential, so it must have a discrete set of energy eigenstates $\chi_n(x)$ (or in Dirac notation, $|\chi_n\rangle$), where n is an index $n = 0,1,2,3\ldots$ for labeling these states.

a) Write down the Hamiltonian H of this system in x-representation. Write it out in an expression that uses the constants m and ω_0 where possible.

Assume that it is known that the ground state (lowest energy eigenstate) of this system is of the form

$$\Psi(x) = Ae^{-bx^2},$$

(in Dirac notation denoted as $|\Psi\rangle$) but that the values of A and b (real constants) are not known, and also the eigenvalue that belongs to this eigenstate is not known.

b) Draw a graph of $\Psi(x)$. For which value of A (in terms of constants b and others that you may need) is this state normalized?

In order to find the values for A and b for which the state $\Psi(x)$ represents the true ground state $\chi_0(x)$, you must use in this problem the *variational method*. For this case, this implies that $\langle \hat{H} \rangle$ is minimum with respect to the variation of the parameter b.

c) Say that the real (but still unknown to us) ground state energy of the system is E_0 , with the corresponding eigenstate $|\chi_0\rangle$. Use Dirac notation to proof that for any state

$$|\Psi\rangle$$
 that we may consider, it will always obey $\frac{\langle\Psi|\hat{H}|\Psi\rangle}{\langle\Psi|\Psi\rangle} \ge E_0$.

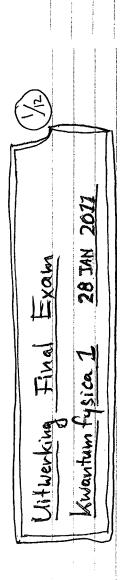
Hint: Use that any trial state $|\Psi\rangle$ can always be written as a superposition of all the real energy eigenstates $|\chi_n\rangle$.

d) The results of **c)** shows that equality $\frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = E_0$ holds only for the case $|\Psi\rangle = |\chi_0\rangle$.

Here $\frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$ has a minimum value, so $|\chi_0\rangle$ and E_0 can be found by a procedure that

minimizes the expression with respect to b. Obviously, this must be carried out in the x-representation. Use this approach to derive the values of b, A and E_0 in terms of m and ω_0 .

e) Calculate for the ground state that you found in d), the expectation value for kinetic energy and the expectation value for potential energy. Explain the result of qualitatively in terms of the Heisenberg uncertainty relation.



The quantum state is given as a function of position, but we need to know the state in velation to velecity

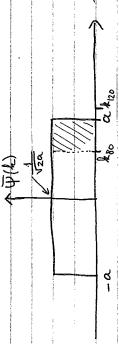
Velocity is proportional to momentum and R-number $v = \frac{P}{m} = \frac{hR}{m}$

We must three for evaluate this state using the Fourier transform \$\pi(k) of the state \$\pi(k)\$

\$\pi(k) = \frac{1}{\sqrt{2\pi}} \big(\pi(x) e^{-ikx} dx = \frac{1}{\sqrt{2\pi}} \big(\pi(x) \end{array} \quad \text{\left} \quad \qq \quad \quad \quad \quad \qq

Where we used the Standard Fourier transform

on p. 1 of the problem set



The probability for a measurement result between + 80 km/s and 120 km/s is now

heo = Vrome for Uso = 80 km/s an

To evaluate this integral, we need to compare to and kno to a (also sketched in figure, not to scale)

p = 109 m⁻¹

R(20 = 120.10³. q.1.10³¹ = 1,035 · 109 m-1

$$\frac{1}{2} \left(\frac{1 - o.6q}{1} \right) = 0.155$$

So probability is 15.5%

a) Hand A commute when [H, A]=HA-AH=0

Salve again for c, and c = > $\left(\frac{E_{o}}{T} + \frac{\Gamma}{E_{o}}\right) \left(\frac{G}{\epsilon_{o}}\right) = \left(\frac{E_{o}}{T} + \frac{\Gamma}{\Gamma}\right) \left(\frac{G}{\epsilon_{o}}\right)$

T(9+6)=0 E. C. + TE2 - EC + 74 = 0

global phase that malas 9, veal and positive this Cy = - Cz => For normalized stake and

12 311/68 T < 0 Harefare (E0+T)<(E0-T) >

ground state is (g) with Eq = F + T

excited state is 196> with E= = E-T

C) The state that we need to calculate the probability for is 19.> ci) P= /<4, 149>/2=/<4//6/19>+4/4>)/2

OR in Matrix nothing

 $P = /(10)(\frac{dz}{dz})/^2 = -\frac{1}{4}$

Similar for the eigenvalue: E-T

7(6,44)=0 TG + FG - FG + TG = 0

(-a 0 / E T | -(-4 at | -1 at -at | 0 +21 | 0 +21 | 0 +21 | 0 a | T E | -1 at | -1 at | -1 at | -1 at | 0 | -1 at

E T / - a o Eo/ 0 a/ -> (We give here full devication, but only proofgiven the engenstates was safficient)

b) We need to solve the eigen value problem

=> H and A do hot commute

(°°) ‡

100 F - F

 $\hat{H} | \hat{V}_i \rangle = E_i | \hat{V}_i \rangle \Rightarrow \left(E_0 + T | \hat{C}_1 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_1 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle = E_i | \hat{C}_2 \rangle \Rightarrow \left(T + E_2 | \hat{C}_2 \rangle \Rightarrow$

[こ-三]2-丁2-0 ⇒ 三2-26年十年3-72-0 ⇒

上 + 1 3 1 E. = 2E. T V4E--9(E-T2) The eigen states that belong to these two egen values: $E_{c} T C_{1} = E_{c} + T C_{1}$ solving for C_{1} and C_{2} $C_{1} = C_{2} = C_{1} = C_{2} = C_{2} = C_{1} = C_{2} = C_$

is eight state for eigenvalue E+T

Where we can choose the global phase 600 => (02)

$$C = \frac{1}{100} P = \left((1 \circ) / \frac{1}{05} \right) / ^{2} = \frac{1}{2}$$

$$C-i\vec{u}$$
 $P = /(10) \cdot \left(\frac{dz}{dz} \right) + \left(\frac{dz}{dz} \right) + \left(\frac{dz}{dz} \right) / z = 1$

$$(c-iv) P = /(4/(i + iv) / (iv) / (i$$

For Huleskigathing time evolution of As describe the state of the system as a super position of lunerary eigen states:

$$\langle \hat{A}(\theta) \rangle = \frac{1}{2} \left(\langle q_g | + \langle q_e | \rangle \hat{U}^{\dagger} \hat{A} \hat{U} \left(\langle q_g \rangle + | q_e \rangle \right)$$

= $\frac{1}{2} \left(e^{+i \omega_g t} \langle q_g | + e^{+i \omega_e t} \langle q_e | \rangle \hat{A} \left(e^{-i \omega_g t} | q_g \rangle + e^{-i \omega_e t} | q_g \rangle \right)$

=
$$\frac{1}{2} \left[\langle q_{3} | \hat{A} | u_{4} \rangle + \langle q_{6} | \hat{A} | u_{6} \rangle + e^{+i(u_{3} - u_{6})t} + e^{-i(u_{6} - u_{4})t} \right]$$

= $\frac{1}{2} \left[(0 + 0) + e^{-i(u_{6} - u_{4})t} \right] + e^{+i(u_{6} - u_{3})t}$

the system oscillates between the tro tools, and (as it should be) the dynamics starts at position -a for t=0. The amplitude is a so the particle goes from -a to ta and back and so forth. The angular frequency is set by the strength of the tunnel coupling 171, and equal to 2/11.

a) a-i) hith the vesult of problem 2c

P2 = 2 , R2 = 2 , So both particles in left

well has probability Py = Py. Pa = 4

a-ii) As fa a-i), P4= 2, P2= 2, so P2 = 4

Pb-i) Need to proof H/47/2 = (EgtE)/47/2 > H/4/2 = H/191/192> = (H, +H2)/9//1/2>

= (Eg/194)/19e2> + 19,> (E/19e2>)

= (Eg + Ee) / (g+)/(ez) = (Eg + Ee) /4+ /cx g.e.d.

b-ii) As for b-i), need to proof H/4/5 = (Ette)/4/13 >

H/47/2 = (H, +H,) 1/41/92/ = E/81/192/+#21/5/192/= (E) E/14/05

b-iii) Need to proof H/4/2/3 = (Eg + Eg)/47/2/3 =>

H/4+1/4 = (# + Hz) (x/9,) 19ez> + B/90) 19gz>)

= (Eg+Ee) (x/42) + (4/42) = (Eg+Ee) /47/48 9:00 = d((Eg+E)/(gg)/(gez)) + ((Eg+E)/(gg)/(gg>))

S.

C) Exchanging particles means putting all cases
of particle 1 in state (or orbital) 1992 into 19e2 > (sitteromes) and 19e1 > into 1992 >, and vice versa for

So (4+)s is symmetric under exchange of particles 告1991/142/ 141/142> = + (4) 去19e1>19a>+诗19g1>19a>=

三(29)(19)一个26)(18)

一志149121422 十去146121422 = 一142

Solyty is auti-symmetric under exchange of two identical particles. (2)

d) We used to uniture $\frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle}$ under variation of b.

Note that $\langle \psi | \psi \rangle$ a luays equals 1 if we always use $A = \left(\frac{2b}{\pi}\right)^{1/4} \left(\text{from question b}\right)$, so we only need to minimize $\langle \psi | \hat{H} | \psi \rangle$ in that case, that is

solve $\frac{d(\langle \psi | \hat{H} | \psi \rangle)}{db} = 0$.

 $= -\frac{4^{2}}{2^{4n}} \sqrt{\frac{2^{4}}{\pi}} \int_{-2}^{\infty} \int_{0}^{\infty} -26x^{2} + 44b^{2}x^{2} e^{-2bx^{2}} dx$ $= -\frac{4^{2}}{2^{4n}} \sqrt{\frac{2^{4}}{\pi}} \left(-2^{4} \int_{0}^{\infty} e^{-2bx^{2}} + 44b^{2}x^{2} + 24 \left(\sqrt{2^{4}} x \right)^{2} e^{-\sqrt{12}x} \right)^{2} d(\sqrt{12}x)$ $= -\frac{4^{2}}{2^{4n}} \sqrt{\frac{2^{4}}{\pi}} \left(-\frac{2^{4}}{\sqrt{2^{4}}} \right)^{2} \left(-\frac{2^{4}}{\sqrt{2^{4}}} \right)^{2} + \frac{4^{2}}{2^{4}} \int_{0}^{\infty} \frac{4^{2}}{\sqrt{2^{4}}} d(\sqrt{12}x) dx \right) dx$ $= -\frac{4^{2}}{2^{4n}} \sqrt{\frac{2^{4}}{\pi}} \left(-\frac{2^{4}}{\sqrt{2^{4}}} \right)^{2} + \frac{2^{4}}{\sqrt{2^{4}}} \int_{0}^{\infty} \frac{4^{2}}{\sqrt{2^{4}}} d(\sqrt{12}x) dx \right) dx$

><\pre>\$<\pre>\$\frac{\pm \no2}{86} + \frac{\pm \no2}{2m} = \frac{\pm \no2}{86} \rightarrow \frac{\pm \no2}{2m} \rightarrow \fr

 $\frac{d}{dy} \frac{(yy) + |y\rangle}{dz} = \frac{d}{dz} \frac{(m\omega^{0} + \frac{4^{2}L}{z^{m}})}{(g^{L} + z^{m})} = \frac{h^{2}}{z^{m}} - \frac{m\omega^{0}}{g^{L} z^{2}} = 0 \Rightarrow$

 $\omega_0^2 = \frac{8 \pi^2 6^2}{2m} \Rightarrow b = \frac{m \omega_0}{2 \pi}$

 $\langle \psi | \hat{T} | \psi \rangle = \frac{4^{2}b}{2^{4}m} = \frac{4}{7} \pi \omega_{o}$ $\langle \psi | \hat{W} | \psi \rangle = \frac{m \omega_{o}^{2}}{\sigma c} = \frac{4}{7} \pi \omega_{o}$

 $\langle \psi | \dot{H} | \psi \rangle = \pm 5$ = ± 5 (agueen indeed with havmonic $A = \left(\frac{2b}{\pi}\right)^{\frac{1}{2}} = \left(\frac{m\omega_0}{\pi\pi}\right)^{\frac{1}{2}}$ Oscillator state)

Heisenberg states $\Delta X \Delta P J t_2$, so if the particle was truly at the bottom of the well, this would give $\langle V \rangle = 0$ with $\Delta X = 0$.

Then, ΔP must be very high, so $\langle T \rangle$ very high and this high energy cost for $\langle T \rangle$ makes that it is not the ground store. It stead, a trade off with both $\langle T \rangle$ and $\langle T \rangle$ a bit more than zero gives a state with univinal everygy.

$$|a_{-i}| P_{LL} = \left| \langle q_{Li} | \langle q_{L2} | (|\psi_{+}\rangle_{S}) \right|^{2}$$

$$= \left| \langle q_{Li} | \langle q_{L2} | (\frac{1}{L_{2}} | q_{q_{1}}) | q_{q_{2}} \rangle + \frac{1}{L_{2}} | q_{e_{1}} \rangle | q_{2} \rangle \right|^{2}$$

$$= \left| \left\langle q_{L1} \middle| \left\langle q_{L2} \middle| \frac{1}{\sqrt{2}} \middle| \left| q_{L1} \right\rangle + \left| q_{R1} \right\rangle \middle| \left(\left| q_{L2} \right\rangle - \left| q_{R2} \right\rangle \right) + \frac{1}{\sqrt{2}} \middle| q_{L1} \right\rangle - \left| q_{R2} \middle| \left| q_{L2} \middle| q_{L2} \middle| \left| q_{R2} \middle| q_{L2} \middle| q_{L2}$$

$$\dot{H} = -\frac{h^2}{z^m} \frac{d^2}{dx^2} + \frac{1}{2} m \omega_0^2 x^2$$

b)
$$\int_{-\infty}^{\infty} \psi'(x) \, \psi(x) \, dx = 1$$
 when normalized \Rightarrow

$$\int_{-\infty}^{\infty} A^2 e^{-2bx^2} dx = 1 \Rightarrow A^2 \left(\frac{-(\sqrt{2b}x)^2}{\sqrt{2b}} d(\sqrt{bb}x) = 1 \Rightarrow A^2 \left(\frac{-(\sqrt{2b}x)^2}{\sqrt{2b}} d(\sqrt{bb}x) = 1 \Rightarrow A^2 \left(\frac{-(\sqrt{2b}x)^2}{\sqrt{2b}} d(\sqrt{bb}x) \right) = 1 \Rightarrow A^2 \left(\frac{-(\sqrt{b}x)^2}{\sqrt{b}} d(\sqrt{b}x) \right) = 1 \Rightarrow A^$$

$$A^2 \stackrel{-}{\rightleftharpoons} U_{\overline{T}} = 1 \Rightarrow A = \left(\frac{2b}{\pi}\right)^{k_f}$$